Crop statistics based on remote sensing data in Poland

Artur Łączyński Director Agriculture Department Statistics Poland

Seminar on Data Science Campus, Kigali, Rwanda 29 April -1 May 2019

Sentinel 2, Kigali 28.04.2019 true colors

Sentinel 2, Kigali 28.04.2019 vegetation index

3

Sentinel 2, Kigali 28.04.2019 moisture index

Data

- Remote sensing data
- SENTINEL 1, 2 & 3 (EU Copernicus) data obtained each 3-6 days, 10-20 m spatial resolution (S1 & S2), LANDSAT, NOAA, MODIS
- in-situ data
- The questionnaire with geo-coordinates and photos provided by Regional Statistical Offices
- Administrative registers
- Paying agency data: Land Parcel Identification System, crop declarations, in-situ inspections
- Maps

Data Base of Topographic Objects, hypsography

Statistical data

Partners

- **Central Statistical Office**
- Regional Statistical Office in Olsztyn in situ data coordinator
- **Regional Statistical Offices**
- Space Research Centre Polish Academy of Science processing, calculations
- Institute of Geodesy and Cartography in Warsaw crop monitoring, yield estimates

Started since 2015 with perspective of full implementation in Statistics Poland after 2020

Methods

- Huge amount of data ca 1.5 TB per scene (15-16 scenes for PL)
- Preprocessing of satellite data
- Segmentation (object recognition) with administrative data, S2
- Time series for each crop in the given season
- Long time series of yield statistics
- Machine learning (supervised training sample) support vector machine, random forest, k-nearest neighbors
- Validation coherence matrices, accuracy
- Generalization

Sentinel 1 – ascending paths

8

Visualization of the in-situ geodatabase with images.

A number of training samples per the Sentinel 1 path in on year (2017-2018)

Crop / Path	Total	summer barley	winter barley	maize	mixed of spring cereals	mixed of winter cereals	avena	summer wheat	winter wheat	summer triticale	winter triticale	summer rape	winter rape	rye
Poland	5084	481	340	509	448	207	426	432	559	218	448	134	476	406
Path 1	579	46	40	53	33	18	53	39	88	24	52	11	73	49
Path 2	1059	97	95	109	88	38	73	101	106	35	90	36	94	97
Path 3	1325	139	76	134	138	39	120	112	147	52	126	14	133	95
Path 4	1109	97	89	114	95	66	93	96	123	55	93	32	82	74
Path 5	1012	102	40	99	94	46	87	84	95	52	87	41	94	91

Radar (SAR) data in crop recognition

Results for major agricultural crops in Poland in 2017 based on S1 (SAR)

Сгор	Area in thousands ha					
winter wheat	1 474					
summer wheat	770					
winter triticale	1 034					
summer triticale	380					
winter barley	564					
summer barley	866					
avena	727					
rye	1 026					
mixed winter cereals	370					
mixed spring cereals	978					
maize	1 993					
winter rape	1 288					
summer rape	323					

Corn yield forecast for regions in 2017 in dt/ha

Drought and yield forecasts in 2018 (agricultural land)

Wheat yield forecast for 2018 (Institute of Geodesy and Cartography)

14

Conclusions

- Satellite data are efficient for the assessment of crop area and yielding in Poland
- The classification methods is to be further developed
- High quality of in situ data required (at least 30 plots per one crop per a scene/region)
- Prefered access to spatial admin data e.g. vectorized parcels
- Combining different data sources

